A behaviour can often be defined as the conduct of a person, the manner and mode of action in which this person treats others and the way he or she responds to a stimulus. Characterising the behaviour of a person is therefore not a simple affair, with any research in this field becoming a highly complex undertaking, including many variables such as social but also genetic effects.

However, these variables have not always been considered as having comparable weight. For example, many researchers believed, in the past, that only an environmental and social component influenced the behaviour of a person, with any biological theory of behaviour being rejected out of hand. This happened, for example, when Communists and other international socialist organisations sought to protect their egalitarian politics by repudiating any links between genetics and personal skills. The Russian geneticist, Vavilov was even allowed to die in prison in January 1943, because he maintained that every person did not have identical chromosomes, a conclusion based on heredity, which was seen as being in conflict with the ideologies, at the time, of the USSR.
In the same way, others were concerned that new information resulting from behavioural genetics would support a perceived reductionist threat in which all personal characteristics were explained by chemical and physical laws. These concerns resulted in a situation in which any suggestion of a genetic component to behaviour was automatically ridiculed, derided or considered as racist. The Nobel Prize winner Konrad Lorenz was sometimes even vilified at the end of the 20th century, because his discoveries in inherited animal behaviour had been used by others to support racist ideas.

These examples demonstrate that research in the genetics of human behaviour can become a very sensitive and complex political issue. It has even been discouraged, in the past, as being potentially dangerous and disruptive to society. This has especially been the case with research relating to intelligence, aggression, antisocial behaviour, anxiety, novelty-seeking, alcoholism, addiction, obesity, and homosexuality.

However, though research in this field has often been contentious, scientific results in this domain, as in any other scientific discipline, should not be confused with the possible use of these results by individuals or society. As was stated in a recent UK House of Lords’ report, entitled *Science and Society*, "Knowledge obtained through scientific investigation does not in itself have a moral dimension; but the ways in which it is pursued, and the applications to which it may be put, inevitably engage with morality." In other words, even though science in itself can be considered as neutral, the applications of science, on the other hand, should be carefully examined while balancing any advantages with the possible risks involved.

One example of the advantages relating to the “medicalisation” of some behavioural characteristics can be demonstrated in some cases of schizophrenia, when these were shown to be related to genetic factors and not just the result of a certain kind of upbringing. Indeed parents of children with schizophrenia were often noticed to welcome these findings. This means that for some traits in which a certain amount of stigma is attached, the “medicalisation” of the traits could confirm the personal “innocence” of those in the past considered responsible for the existence of these traits.

However, this “medicalisation” of a behaviour may also have its disadvantages, since some individuals could be led to believe that nothing could be done with a certain trait because of its genetic origin. A kind of hopelessness and fatalism may then occur in affected persons as well as in those around them.

For example, Mark Rothstein states that if one assumes that there is a genetic component to alcoholism, then

> [on] the one hand, it could be argued that the genetic component vitiates the moral taint from individuals with alcoholism. On the other hand, the genetic, heritable nature of the disorder may increase the stigma associated with alcoholism; it may increase the pressure for genetic screening for the mutation; it may contribute to individuals feeling a sense of resignation and a reluctance to enter treatment; and it may lead to disdain for individuals who, despite knowledge that they have the mutation, proceed
to drink nonetheless.

Another concern relates to the possibility of discrimination, which may arise from studies in behavioural genetics. This could exist as a form of negative discrimination in which a person may be disadvantaged, bullied or even persecuted because of a genetic behavioural difference over which he or she has no control. Positive discrimination, on the other hand, may take place when persons are selected because of some specific unearned trait. For example, many will, and should, enjoy the recognition and appreciation given by their peers for traits such as charisma, intelligence or even eloquence at committee meetings, but these individuals should also remember that no real effort was made, on their part, to obtain these genetic characteristics. In other words, no additional special respect should, theoretically, be bestowed on these persons just because of their capacities.

Too often in our societies, relationships between individuals are seen as being competitive. This has arisen because many modern biological theories defending the survival of the fittest and the hierarchies of status wealth and power, in all walks of life, have been accepted without critical judgement. But this may not be a true reflection of biology. Indeed, society could also be considered as a system whereby every person exists to complement each other’s gifts and capabilities (be they genetic or otherwise). This would then resemble the “society” of 100 trillion cells which make-up a human person, whereby each cell complements the other without competition. In fact, in such a representation, competitive discrimination would only be found in diseased or cancerous cells.

Results obtained from research in behavioural genetics should, therefore, not be shunned by ethical commentators but considered, instead, as an opportunity to encourage members of society to become more tolerant and compassionate towards each other in a spirit of solidarity. However, this would only be possible if the scientific results are explained and presented in the appropriate manner and in the right context. If genetic behavioural results are presented in an unbalanced and irresponsible manner and misused as a means to providing arguments for racism, discrimination and eugenic selection, then serious social problems will become inevitable.

References

4 Select Committee on Science and Technology, House of Lords, Science and Society, Third Report, 23 February 2000, Public attitudes and values (Chapter 2), 4 ; http://www.publications.parliament.uk/pa/ld199900/ldselect/ldsctech/38/3...

5 Mark Rothstein, "Behavioural Genetic Determinism, Its Effects on Culture and Law" in Behaviour Genetic, The Clash of Culture and Biology

Editor's Note: This article was a Guest Commentary from Ethics & Medicine: An International Journal of Bioethics Spring 2007 23:1 and is used by permission.

Podcast Episode:
47
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

Source URL (modified on 04/27/2015 - 13:47): https://cbhd.org/content/ethics-and-genetics-human-behaviour